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P R E D I C T I O N  OF T H E  E F F E C T I V E  E L A S T I C  P R O P E R T I E S  OF S P H E R O P L A S T I C S  

BY T H E  G E N E R A L I Z E D  S E L F - C O N S I S T E N T  M E T H O D  

A .  A .  P a n ' k o v  UDC 539.3 

The problem of predicting the effective elastic properties of composites with prescribed random 
location and radius variation in spherical inclusions is solved using the generalized self-consistent 
method. The problem is reduced to the solution of the averaged boundary-value problem of the 
theory of elasticity for a single inclusion with an inhomogeneous transition layer in a medium 
with desired effective elastic properties. A numerical analysis of the effective properties of a 
composite with rigid spherical inclusions and a composite with spherical pores is carried out. The 
results are compared with the known solution for the periodic structure and with the solutions 
obtained by the standard self-consistent methods. 

I n t r o d u c t i o n .  The effective physical and mechanical properties of composites are due to a complex 
interaction between a large number of the elements which form the structure of the material. The irregular 
character of real structures requires solving the problems of predicting the effective physical and mechanical 
properties of composites in a statistic formulation. Pan'kov [1~ 2] illustrated the potentials of the generalized 
self-consistent method by referring to the prediction of the effective elastic properties of unidirectional fibrous 
composites. We consider the application of this method to composites with random structures of spherical 
inclusions. 

Genera l ized  Sel f -Consis tent  M e t h o d .  Let a random structure of a composite possess homogeneity 
and ergodicity properties [3-5] and be given by the characteristic realization in a certain domain V with 
boundary F. All inclusions have the same elastic properties, geometrical form, and space orientation. The ideal 
contact conditions hold at the interphase surfaces. There is a statistic spread only in the relative location 
and dimensions of inclusions and in the similarity coefficients c~. The tensor of elastic properties C(r)  in 
the domain Y admits the representation Ciimn(r) = w(r)CFmn + (1 -w(r))Ci~mn in terms of the inclusion 
indicator function 

1, r e y F ,  
0, vF, (1) 

where VF is the inclusion domain in the domain V; the elastic properties of the inclusions and the matrix are 
homogeneous and are specified by the elastic-property tensors C F and C M, respectively. 

The generalized self-consistent method [1, 2] allows one to reduce the problem of predicting the tensor 
of the effective elastic properties C* of a composite, which consists of solving the boundary-value problem of 
the theory of elasticity for a microinhomogeneous domain V [3-6] 

0 
= o (2) 

% 

[e.g., relative to the displacement field u ( r )  with boundary conditions of the form uil r = Q*/ri], to the simpler 
averaged problem 

~ ( a i j m n ( ' )  6q-~nfim(')) --O (3) 
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for the displacements ui * = eij~j prescribed sufficiently far from the origin of coordinates ~. Here ~* is the 
specified tensor of homogeneous small elastic macrostrain of the composite and the coordinate axes ~i are 
oriented along the ri axes. Formally, the relation between the actual u(r)  and the averaged ~(~) fields of the 
boundary-value problems (2) and (3) is found by averaging 

1 g 
= + - 

Here N is the number of inclusions in the characteristic domain ~ C V at a sufficiently large distance from 
the boundary F, r(k ) are the radius-vectors of the center of the kth inclusion in the domain ~, ~(k) is the 
similarity coefficient of the kth inclusion which is specified relative to the dimensions of the formal inclusion 

1 N 
v of the averaged problem and the volume of which is Ivl = ~ E Iv( k)l' where Iv(k)l is the volume of the 

k :1 
kth inclusion, and the power fl depends on the dimensionality of the problem and is equal to 1, 2, or 3 for 
laminated, unidirectional fibrous, or granular composites, respectively. 

The field of elastic properties of the averaged problem (3) 

takes into account the near order of relative arrangement and the variations in the dimensions of the inclusions 
by means of a special averaged indicator function 

1 N 

which is calculated using the specified field of the indicator function w(r) [see (11] of the composite. In formula 
(4), k -1(~) is the tensor field inverse to the field 

kijmn(~) 1 - (o(~) Eiimn + ~(~) - VF -1 �9 M = __ C~bm,), 1 - vF VF(1 :~FF) Sijdb(CJbmn 

where E is the identity tensor, S -1 is the tensor inverse to the difference tensor S - C F - C M, and VF is the 
volume proportion of the inclusions in the composite. 

If C F and C M are isotropic and C* is the isotropic or transversely isotropic tensor, the field a(() is an 
isotropic or transversely isotropic field, respectively, at each point ~. The bulk modulus Ka(~) and the shear 
modulus Ga(~) for the isotropic field a(~) or, respectively, the bulk modulus for the plane strain kal2(~) and 
the shear modulus Ga12 (~) in the plane of isotropy (e.g., ~a O~2) for the case of the transversely isotropic field 
a(~), can be determined by formula (4) using a unified relation of the form 

La(~) = LM ]3(~) + (~(~) --/3(~))'?L ' (5) 

where 
a ( ~ )  5:(~) fl(~) = 1 - &(~)  L* - LM 

= v"-'~" 1 - v-----7' 7s = L F -  LM" (6) 

The symbol L in formulas (5) and (6) should be replaced in succession by K and G or k12 and G12, respectively. 
For an arbitrary, transversely isotropic tensor of elastic properties C with the plane of isotropy ~10~2, the 
relations k12 -- (1/2)(Cml + Cl122) and G12 "" C1212 hold. 

Thus, from the solution of the auxiliary averaged problem (3), (4) for the displacement field fii(~) - 
Uimn(~)emn, one can determine the tensor u F ( c  *) as a function of C*, whose components have the form 

- F  1 f 0 Oimn(~)dv. 

Cijm n + vr(CFdb M - F * The solution of the equation C~m n M = -- Cijdb)U~bmn(C ) is the desired tensor of effective 
elastic properties C* of the composite with a random structure. 
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Fig. 1 Fig. 2 

N u m e r i c a l  Ana lys i s .  We consider the numerical results and compare them with known calculations 
[4-7] of the effective isotropic elastic properties of composites on the basis of two types of the space 
quasiperiodic model of real random structures with spherical inclusions. The models of random structures 
(Figs. 1 and 2) are based on the hexagonal close packing of spherical cells; the probability of appearance of 
inclusion-free cells is calculated based on the volume proportion of the inclusions VF in the composite and on 
the guaranteed minimum thickness, which is assumed to be 2% of the radius of the cell. For the model of the 
first type (Fig. 1), we also specify the variation coefficient equal, for example, to 0.1 for a (a is the similarity 
factor of the dimensions of inclusions) and random displacements of the inclusions inside the cells. For the 
model of the second type (Fig. 2), all inclusions are of the same dimensions and have no displacements inside 
the cells. The maximal dimensions of the inclusions in both models and the dimensions of the spherical cells 
are the same. 

Within the framework of the calculation scheme of the averaged problem, we solve two problems for 
a spherical inclusion v with the coordinate origin ~ at its center. The inclusion is surrounded by a spherical 
transition layer, which is inhomogeneous with respect to the variable ~ - [~[ but isotropic at each point 
and has a field of elastic properties a((),  and by a homogeneous isotropic medium with the tensor of elastic 
properties C*. The problems are solved under the following simple loading conditions of the medium at 
infinity: 1) the three-dimensional tension; 2) the shear, for example, in the ~10~2 plane. Solving these problems 
simultaneously, one can determine the effective bulk modulus K* and the shear modulus G* of the composite. 

In a numerical solution, the transition layer of thickness 7rF (rF is the radius of the central inclusion v) 
is divided into 50 thin layers, and the elastic properties of each layer are assumed to be homogeneous and 
isotropic. The general solutions for the deformation fields of each thin layer are known [7]. The ideal contact 
conditions allow one to formulate a system of linear algebraic equations of the band type for desired coefficients. 

The values of the normalized effective bulk modulus k = K * / K M  and the shear modulus g = G*/GM 
(KM and GM are the bulk modulus and the shear modulus of the matrix) of the two models of random 
structures predicted numerically by the generalized self-consistent method are given with the superscripts (1) 
and (2) in the first two rows of Table 1. Calculations were performed for the following values of the Young's 
modulus and Poisson ratio of the inclusions: EF = 100EM and ~'f = 0.2 and EF = 0 and vF = 0. In 
both cases, the Young's modulus EM = 3.75 GPa and the Poisson ratio is v M = 0.4 for an isotropic epoxy 
matrix, the subscript R refers to the first-approximation solutions of Vanin [4] for a periodic structure, the 
subscripts 1 and 2 denote the solutions obtained by the generalized self-consistent method with the use of 
piecewise-constant approximations 

i, O ~  ~ r F ,  { 1, O ~ (  ~ r F ,  

1) &(~) ---- O, rE < ~ <~ ro, 2) 5J(~) = rE, ~ > rF 

VF, ~ > r0; 

(7) 
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TABLE 1 

Type of the 0.6 

model II 

k(1) 
k (2) 0.097 

kR = kl = k_ 
kn = kl = k+ 0.129 

k2 
k+ 

g(1) 

g (2) 0.184 
gR 0.270 
gl 0.215 
92 
g _  

g+ 0.270 

Note. I) EF = 100EM and uF = 0.2; II) EF = 0 and VF = 0. 

for the averaged indicator function cD(~), where the parameter  r0 is determined from the relation (rF/ro) 3 = VF, 
and the  subscripts minus and plus denote Khashin-Shtr ikman's  boundary values for a macroscopic two-phase 
med ium [5-7]. For a composite with spherical pores, the equality k_ = g-  = 0 holds. The solutions for kl 
and gl and k2 and 92 obtained by means of the piecewise-constant approximations (7) are identical to the 
solutions obtained by the known self-consistent methods [5-7]. 

C o n c l u s i o n s .  The generalized self-consistent method  allowed us to reduce the problem of predicting 
the effective elastic properties of composite materials of random space structures to the solution of a simpler 
averaged problem for an inclusion with a transition layer in a medium with the desired effective elastic 
properties. The characteristic dimension of the transition layer is determined by the correlation radius of the 
random structure, and its elastic properties take into account the near order of relative arrangement of the 
inclusions. 
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